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through, starting from an insertion loss function of
allowed form. His procedure parallels that used in our
numerical example. He does not introduce a complex
variable equivalent to p, however, and thus does not
have Richards’ theorem available for proving physical
realizability. In particular, he makes no point of the
second condition for the physical realizability of an im-
pedance function. Ozaki and Ishii,!? clearly state this
second condition, but they do not parallel Darlington

U H. Ozaki and J. Ishii, “Synthesis of transmission-line net-
works and the design of uhf filters,” IRE TraANs., vol. CT-2, p. 325~
336; December, 1955,
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by starting from a given insertion loss function. E.M.T,
Jones in the 1956 IRE CoNVENTION RECORD uses a com-
plex variable, but he makes no mention of the second
condition for physical realizability, and appears, in his
proof of physical realizability, to have appealed to
Richards for a theorem which Richards did not prove.
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An Analysis of the Diode Mixer Consisting of Nonlinear
Capacitance and Conductance and Ohmic Spreading

Resistance*
ALAN C. MACPHERSONTY

Summary—A method is presented for calculating the mixer ad-
mittance matrix ¥’ which results when an ohmic impedance is con-~
nected in series with a diode mixer described by an admittance
matrix V. There are no restrictions on the frequency dependence of
the ohmic impedance nor on the number of harmonic sidebands con-
sidered. The equations are worked out in detail for the ‘‘low Q”
case in which signal, image, and intermediate frequencies are con-
sidered, and it is shown that ¥” in this case is ‘‘nearly low Q.” As a
result of this analysis the usual criterion for good high-frequency
mixing, i.e., that the product of the spreading resistance and the
barrier capacitance be small compared with unity, is criticized and a
new figure of merit is proposed.

Explicit formulas have been derived for calculating the elements
of ¥’ when Y represents the parallel combination of a nonlinear con-
ductance and capacitance. In general, these formulas are cumber-
some, bat three special cases have been considered in detail.

Case 1: Zero spreading resistance and equal admittances con-
nected to image and signal terminals. Results: a) The conversion
gain is independent of the contact area. b) Regions of negative IF
conductance are always associated with arbitrarily high gain.

Case 2: High-frequency, small spreading resistance, image
shorted across nomlinear conductance and capacitance. Results:
a) The conversion loss and the IF admittance can be given by closed
equations. b) The IF conductance can be negative. ¢) Regions of
negative IF conductance are bounded by regions of arbitrarily small
IF conductance. d) The conversion loss can decrease with increasing
frequency. e) Low conversion loss is accompanied by narrow band-
width.

Case 3: The spreading resistance is zero and the image is shorted.
Results: a) Above a certain frequency negative IF conductance is
obtained and arbitrarily low conversion loss is possible. b) The
situation is quite similar to that of Case 1.

* Manuscript received by the PGMTT, Mayv 18, 1956.
1 Naval Research Lab., Washington, D C

Measurements of mixer performance at the ‘‘available terminals”
are discussed and the failure of the ‘‘phenomenological theory of
mixing” as a basis for making such measurements is emphasized.

INTRODUCTION

HIS PAPER will be concerned principally with
Tthe mixing properties of the circuit of Fig. 1 (next

page), where arrows indicate that g and C are func-
tions of the voltage across them. Frequent reference will
be made to Torrey and Whitmer! and whenever possible
the notation used therein will be followed here.

The circuit of Fig. 1 has been widely used, qualita-
tively at least, as an equivalent circuit for point-
contact crystal diodes,? particularly for microwave work
in which the capacitor is of importance. The part of the
crystal diode that Fig. 1 is supposed to represent is
shown in Fig. 2. The terminals are at the dotted lines
AA" and BB’. The distance from the line A4’ to the
surface is a small fraction of the shortest wavelength in-
volved, while the line BB’ is located so as to include
nearly all of the spreading resistance. It can be shown
that the latter requirement will be fulfilled if BB’ is
several times the contact diameter away from the con-
tact region.

The validity of the circuit of Fig. 1 as a representation
of Fig. 2 is open to question. It has been verified in the

1 H. C. Torrey and C. A. Whitmer, “Crystal Rectifiers,” McGraw-
Hill Book Co., Inc., New York, N. Y.; 1948.
2 Jbid., p. 24.
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Fig. 1—Small-signal equivalent circuit.
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Fig. 2—Point-contact crystal diode.

several megacycle range for silicon point-contact crys-
tals. Analysis of the mixer properties of this circuit yields
negative IF conductance under certain conditions. This
has been observed in H. Q. North’s welded-contact
crystals.® The actual equivalent circuit is probably at
least as complicated as Fig. 1.

The region under consideration is clearly only part of
the crystal diode; in addition, there is the rest of the
whisker and semiconductor and various components
necessary for proper support and protection. These com-
ponents, however, are nearly lossless and are certainly
linear so that the effect is simply that of an impedance
transformer and need not be explicitly considered. In
choosing the terminals discussed above we have in-
cluded the region of the nonlinearity and the region of
the important losses. The use of the “low-frequency”
concepts of voltage, current, and lumped components is
justified, if, to put it roughly, the distance between 44’
and BB’ is small compared with a wavelength. For com-

3 Ibid., p. 398.
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mercial crystals designed for a minimum wavelength of
about 4 c¢m, the contact diameter is less than 0.001 inch,
so that the condition is well met.

The central engineering problem of a microwave
mixer is to relate the small-signal parameters to quan-
tities of interest when the crystal is operated as a mixer
—decidedly a large-signal nonlinear problem. The be-
havior (except for noise considerations) of the mixer is
completely specified when values are obtained for the
elements of the mixer admittance matrix. The situation
is much like that encountered in the theory of linear
n poles, except that each terminal pair is associated
with a different low-power-level frequency. Since an in-
finite number of these frequencies exists in the mixer,
the admittance matrix is an infinite one. Once the ad-
mittance matrix is known, the conversion loss, IF ad-
mittance, etc., can be calculated when specified admit-
tances terminate each pair except the IF terminal pair.

The complete circuit of Fig. 1 has not (to the author’s
knowledge) been quantitatively treated in the literature.
The case in which C is assumed linear has been treated
rather thoroughly.t The case in which 7 is zero but both
¢ and C are nonlinear has been partially treated,® but
only with respect to the spectacular effect of negative
IF conductance which the nonlinear C makes possible;
there is in this reference no calculation of conversion loss
and no quantitative information on the effect of spread-
ing resistance. Only the broadband (signal and image
admittances equal) case was treated by Torrey and
Whitmer. One of the purposes of this paper is to point
out that at sufficiently high frequencies, the nonlinear
capacitance in Fig. 1 can have an important effect on
the properties of the mixer even though negative IF
conductance does not appear. Negative [F conductance
may not appear for one or both of the following reasons:
Cis not sufficiently nonlinear, or the spreading resistance
is too large. The properties of the barrier conductance
also have some influence.

TREATMENT OF SPREADING RESISTANCE

In a mixer there are an infinite number of {requencies
at low power levels. It is customary to consider only
three of these* the signal, intermediate, and image fre-
quencies.® This approximation becomes increasingly
poor for low-loss mixers. Since the inclusion of nonlinear
capacitance can result in a mixer with zero conversion
loss, the general treatment will be for any number of
low-level signals.

A generalization of Fig. 1 may easily be made (in
principle) as follows: the spreading resistance » may be
considered complex and may be different for each low-
level frequency of interest. he t“spreading impedance”
will therefore be denoted by 2., where n denotes the
frequency.

4 Ibid., p. 157.

8 Ibid., p. 406.
¢ Ibid., p. 111.
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This might be useful if, for example, one wished to
include the catwhisker (which has a different impedance
at signal than at IF frequencies because of its inductance
and skin effect) in the spreading impedance.

Assume that the admittance matrix ¥ of the mixer
not including the z,’s, is known. Now, ¥ may be any-
thing, and will at first be kept general, but the case of
most interest at present is that in which ¥ is the
admittance matrix of the circuit of Fig. 1 with »=0. The
latter is given by Torrey and Whitmer? {for the most
general case (arbitrary number of terminal pairs, arbi-
trary LO voltage waveform) and specialized to a con-
sideration of signal, image, and intermediate frequen-
cies only,® and with the local oscillator voltage (LO)
waveform restricted to even functions.

The frequencies of interest can be expressed as 8-+nw
where § is the intermediate frequency, # is a positive or
negative integer, and w is the LO frequency. Current and
voltage at the frequency S+#nw will be denoted by <,
and v,, respectively. Then I= YV, where I and I are
column matrices formed from the ¢,’s and the z,’s.

If i,/ and 2, are the new values after the addition of
2s, then 4," =1, and v,” —1,/2,=v,. These equations are
substituted into 7=YTV and the 1,"”’s are solved for in
terms of the 2,”’s. The coefficients of the v,”’s are the
elements of the new admittance matrix Y’ which de-
scribes the original matrix with the spreading im-
pedance added.

The calculation is straightforward and the results can
be given as follows: form the diagonal matrix Z whose
elements along the diagonal are the z,’s. Next form the
matrix B=ZY-+1, where 1 denotes the unit matrix.
Calculate b, the determinant of B, and all of its cofactors
by, where 7 and ¢ denote row and column, Then, ¥/,
a typical element of ¥’, will be given by

yrc’ = < Zbiryic )/by

where the unprimed ¥’'s are the elements of V.

To illustrate the procedure, and for future reference,
the equations will be worked out for the case of the sig-
nal, image, and intermediate frequencies in the notation
of Torrey and Whitmer.

At this point Y is arbitrary and can be written

Yaa Xag  Yay
V=1|9 Y88 Yov|- (1)
Vve Xy Vyy

Assume, as is customary, that the 2,'s are all real and
equal, Then
r 0 0
Z=10 r O @
0 0 r

7 Ibid., p. 165.
8 Ibid., p. 408.
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L+ Yook Yagr Year?
B=2Y +1=1 ysr 14+ yser  yayr 3)
Vel Vagl 1
and
Yoa| Va8 Yoo
V'=1{9sd ys8 38/ 4
S A
where
bYao' = Yaabir + Vabai + Vyabst
byas’ = Yasbis + Yssber + Yysbar
DVay' = Yaryb11 + Yoyba1 + Yyyba
bysa’ = Yaabiz + Ygaboz + Yyabie
byss' = yagbia + ypgbar + yysbao (5)
b¥sy = Yaybiz + ¥5,092 + Yovbaz
byya' = Yaabis + Vsabzs 4 Yyabss
byys' = Yapbis + ygsbas -+ Yysbss

bYyy = Yaybiz + yaybes + Vyabas.

It is usually assumed that ygs is real and that there are
no circuits i the mixer which can discriminate between
the signal frequency and the image frequency, i.e.,
V18 = Vap™, Yov =Vpa™, Yra=Yar*, and ¥yy =9o.", where the
asterisks denote complex conjugates. If the preceding
four conditions are all met, one says, by definition, that
the mixer, or the mixer admittance matrix, is “low (.”?
Then,

Yaa Yo Vay
Y=19a g8 Y
Yor*  Yag® Yoo

It can then be ShOWTl that b33=b11*, 631 == bm.*, b32 = bm*,
o1 = bys*, and by is real. From these relations and (8), it
follows that yag' =34 Yea' =322"% v =¥a,
Veo' =Ygy ¥, and by’ is real. Since b is not, in general,
real, v is not real and the mixer is not low Q. A mixer
which meets all the requirements of a low Q mixer except
that ygs” be real will be termed “nearly low Q.” If the
time zero is properly chosen,® 44,” can be made real and
then

Voo Vas Vory
V'=|gs yss g8
Yar' ™ Yap®  Yaa'*

There would seem to be little point in presenting the
long expressions for the 3’’s but, since each b,; appears
several times in Y/, the following formulas may be

9 Ibid., p. 115.
19 Ipid., p. 117.
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useful

bu = (1 + gos) (1 + Yaa'?) — 72yas™ysa*

bi; = V2yﬁayaﬂ* - yav*7(1 + gﬁﬁy)
biz = 72960 Yay* — 7¥ga(1 + Yau™r)

(6)
ba1 = 2YarYag™ — 7Vap(l + Yaa™7)

b22 = | 1 + yaarl2 - 7'2‘ ya'y|2
b= (1 + yaay)bll + %ﬁ”blz + ya’yrblvi-

Finally, in order to compute ¥’ for the circuit of
Fig. 1, one uses for ¥ the formulas in Torrey and
Whitmer!! for the general case (LO waveform arbi-
trary), or those for the case of LO waveform “even.”'2

At microwave frequencies the terminals to which ¥’
refers are not available for measurement. If for example,
one is dealing with a waveguide mixer, impedance meas-
urements must be made in the waveguide at some
distance (so that higher modes will die out) from the
terminals to which YV’ refers. In addition, there will be
“parasitic” impedances associated with the mechanical
mounting of the point on the crystal. This problem may
be present to a lesser extent for the intermediate fre-
quency. One can formally handle this by connecting a
four-pole (usually nearly lossless) on each of the terminal
pairs. A new admittance matrix will result, ¥’’, which
describes the mixer at terminals which are actually
available for measurement. It is intuitively clear that
if all the four-poles are linear and if the four-poles con-
nected to the signal and image terminals cannot dis-
criminate between these two frequencies, ¥’ will be
nearly low Q. The proof would be quite similar to the
above proof that Y’ is nearly low Q and has been given
in essence by Peterson and Llewellyn.® The fact that
these authors were treating the case of the linear capaci-
tance is immaterial.

QUALITATIVE STATEMENTS CONCERNING THE EFFECT
OF FINITE SPREADING RESISTANCE

There is a frequently employed argument that for
good high-frequency performance, wCr should be much
less than one. In the first place, since the barrier
capacitance is a function of bias, it is not clear what is
meant by C in the above expression. Presumably one is
to assume that the barrier capacitance is linear. Even
so, the above criterion does not appear to be useful or
accurate. Consider the two extreme instances, the first
in which wCr is small because 7 is very small while wC
is finite, and the second in which wCr is small because
wC is very small, while 7 is finite. If the above criterion

1 Jpid., p. 166.

2 Ibid., p. 408.

181, C. Peterson, and F. B. Llewellyn, “The performance and
measurement of mixers in terms of linear-network theory,” Proc.
IRE, vol. 33, pp. 458-476; July, 19435.
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is correct, these two cases should give about the same
high-frequency performance. In the first case, the low-
frequency conversion loss will be low (assume that in
both cases the barrier conductance is sufficiently non-
linear), and the high-frequency conversion loss will be
identically low. This is true because of the general
theorem that a reactive network placed in tandem with
a four-pole does not change its conversion loss. Or, if
proof for a particular case is desired, (15) in this paper
and (17) in Torrey and Whitmer,* may be used to calcu-
late the conversion loss L. It will be noted that wCy,
where C; is the linear capacitance, appears only in the
combination wCy+ 5, and since b, is arbitrary, L will be
independent of frequency. In the second instance, how-
ever, L will be very high for both the low-frequency and
the high-frequency case.

The case of the linear capacitor is treated in Torrey
and Whitmer, and the equations for the elements of
V' are also given.? The quantity wCr does appear re-
peatedly, but this is not the whole story by any means
since 7 appears in other ways also. This must be so, be-
cause obviously, in the low-frequency case, in which
wCy is negligible, large » will impair the performance.

One would like to enunciate a rule or rules of thumb
for low L for the circuit of Fig. 1 at all frequencies. It is
clear that the requirement on # is that the elements of
Y’ be nearly equal to the elements of V. Eq. (5) indi-
cates that the requirements on b and the ;s are that
b and by be close to one and that b3, b2, and by, be
nearly zero. Eq. (6) shows that the only conditions
which will simultaneously satisfy the above conditions
are that y,7 be small compared with one. Using (6), one
obtains the result that g <1 and wC,r<<1. Since g; and
g2 must be equal to or less than gy, and C; and C; must
be equal to or less than Cy, it is sufficient to require that
gor and wCor be small compared with one. Adding con-
ditions for nonlinearity, one can say that at low fre-
quencies the requirements are gigs/g¢?221 and gkl
while for high frequencies the additional requirements
are C1Cy/Co?==21 and wCyr < 1. Perhaps it is not too far
fetched to propose, for an over-all wideband figure of
merit, that g18:C; Cs/ g Co’r? be large compared to one.

For the point-contact geometry, 7 increases as the
diameter of contact decreases while the C's and g,’s de-
crease with the area of contact.l” This is a possible ex-
planation for the well-known fact that, particularly for
high frequencies, small contacts are necessary for low
L. It is worth pointing out that this is due completely
to the geometry of the point contact which is roughly
planar for the C/'s and g;'s but three-dimensional for
7. In a completely planar geometry, for example, L
would be independent of the cross-sectional area.

4 Torrey and Whitmer, op. cit., p. 409.
1 Ibid., p. 157.

16 [bid., p. 160.

17 Ibid., p. 98.
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OPERATIONAL MEANING OF THE ELEMENTS OF Y’/

Probably the most straightforward and elegant way
to measure and express the properties of a mixer is by
means of the elements of ¥”’. This information, after all,
completely describes the properties of the mixer at a
given bias and LO drive, just as the elements of the
admittance matrix of any linear # pole described its
properties. Equipped with this information the engineer
can calculate the conversion loss, the IF impedance, and
other properties as a function of the signal and image
termination.

In Torrey and Whitmer!® there is a discussion of what
is called the Phenomenological Theory of Conversion
(PTC). According to this theory, one can calculate the
elements of ¥’/ for the case of signal, image, and inter-
mediate frequencies from a series of measurements of
the rectifying properties of the crystal made at LO power
levels; the theory does not appear to be applicable to
the mixer which includes a nonlinear capacitance. Dur-
ing the war almost all the measurements of the elements
of V"' were based on the PTC, and at the present time
the JAN specifications are based on this method. Never-
theless, the method is highly questionable, particularly
if the capacitance is nonlinear. It would therefore seem
pertinent to outline a general method for measuring the
elements of Y/, regardless of the equivalent circuit of
the mixer. The equations for mixer IF admittance yg
and for mixer conversion loss L are!®

vs = Yep — Lol (M)
i Yoat o
and
L= Wgs (8
where
W = L&JL_Y_“_%E . (9)
&a ‘ Vo \2

As before, a, B, and v refer to the signal, intermediate,
and image frequencies, respectively; the Y./'s are the
elements of the 2X2 admittance matrix Vs, which is
formed from the 3 X3 matrix Y’/ by specifying a termi-
nation at the image terminals; y, is the signal admit-
tance; g, is the real part of y,; and gg is the real part
of ys. The relationships between the elements of Y’
and Y, are?

YVayVay™
tha = Vaa — —*‘Y-Z——*‘ (10)
Yoe T+ Ve
Var Vab™
Vas = Yag — 57 5 (11)
yaa + Ve
18 Tbid., p. 119.
19 Ibid., p. 136.
20 Tbid.
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Yoy Voe
Ysa = Y= (12)
Yaat + Vo
Voa*Yas™
Veg = ygg — ———— (13)
Voo + o

where y, is the admittance at the image terminals. Note
that the capital letters indicate the elements of ¥, and
the small letters indicate the elements of ¥/, For con-
venience, the elements of ¥’/ are not primed.

It is known?! that ys, can be made real by a proper
choice of the origin of time. If y3, is a particular value
of v for some particular choice of time zero, then the
general form of yg, is: yg. =exp(—jwlo)ys. where #; is
arbitrary. In the same way, Yoy =Yar exp(Zjwt;) and
Voo =Yaae By substituting into (12), the following gen-
eral expression for Y, is obtained: Vg =exp(—jwlo) ¥ga,
where Y}, is a value of Yy, for some choice of time zero.
Now ¥, is in general complex, but by proper choice of
to, Yo can be made real. In what follows it is assumed
that Y, is real and it will be denoted by Gga.

The parameters to be measured are the elements of
Y’'. The general procedure is as follows: first, set v, at
some known value, y,I. Second, measure vz for three dif-
ferent known values of v,. Eq. (7) can now be used to
solve for Yo, Va.l, and Y,5/Ggl, the I's corresponding
to the value of y.. Third, L and gg are measured for any
known value of y,, and from (8) and (9), Gg is nb-
tained. L can be measured by any reliable method such
as the heterodyne method?? using either a cw or noise
signal, and gz can be measured with an rf bridge. Thus,
a complete set of V,,’s is obtained. The above procedure
is repeated for a different value of ¥, and a second set
of ¥, s is obtained. This is more than enough informa-
tion to solve for the elements of Y’/ by using (10)
through (13) twice.

The practical measurement is complicated by the fact
that ¥, and ¥, are not easily varied independently. This
is because the waves associated with the two admit-
tances are located physically in the same transmission
line. Thus one must resort to frequency-sensitive termi-
nations in order to vary ¥, and ¥, independently. 1t ap-
pears that an excellent pair of choices for y. would be
infinity and zero, for then V,;7=w; and the only re-
maining unknown would be y4y. Then from (11)

Yoy Yas™

*
Vae

Yaﬁ” = Yag T

Yay can be obtained. The above method would appear
to be practical. The values infinity and zero for y. can
be approximated by inserting a transmission type cavity
in the line tuned to the signal frequency. Variation of
v, could be accomplished either by varying a termina-

o Thid., p. 116,
2 Thid., p. 200.
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tion on the far side of the cavity, or by detuning the
cavity (¥, would have to be measured with, for example,
a standing-wave machine). In the case of v, it could
probably be assumed that the corresponding standing-
wave ratio would be infinite. Note that no microwave
impedance measurements at the microwatt level are
necessary. Since the author has never made measure-
ments of this type, he cannot vouch for the success of
the above method. Nevertheless, it clearly demon-
strates the operational meaning of the elements of Y.

CALCULATIONS OF L, vs, AND gg

Once the admittance matrix ¥’ has been calculated
by the procedure given under the section on “Treatment
of Spreading Resistance,” (7), (8), and (9) can be used
to calculate L, ys, and gs. It is clear that for the general
case, these equations will be extremely complicated.
There is an additional complication owing to the fact
that, in general, one wishes these quantities as a function
of v, and .. It would appear quite feasible, however, to
make numerical calculations, particularly if a computer
is available, and it is planned to do so. However, if one
chooses highly idealized cases some manageable equa-
tions can be obtained.

Case 1

Assume that 7 =0, and that the image and signal are
terminated with equal admittances (broadband case).
Insofar as gs is concerned, this case is treated in Torrey
and Whitmer.?® For convenience, ¥, which in this case
is equal to Y”, is reproduced here:

{—go 4+ joCo g1+ joCy  ga+ juC
41 . (14)

v = [gl 8o
go —_ ijQ

g2 — ij2 81— ijl

There are some additional relationships which are not
mentioned in Torrey and Whitmer: C; < Cy, Co =< Cy, and
2C12/Coy= Cy+Cs. These relations hold for the same
reasons that the equivalent ones hold for g, g, and g,.%

The statement is frequently made that when the fre-
quency is high, the area of the point contact must be
made small in order to reduce the capacitance. This is
not true, however, when »=0. The C;’s and the g;'s are
so intimately related to each other that a decrease in
contact area, which would reduce the C;s would reduce
the g.s by the same factor. In other words, g,/C; de-
pends only on the character of the potential barrier and
not on the geometry. Now L is a dimensionless quantity
which depends on the g/'s, the C.’s, and v, which is arbi-
trary. Assume that for some geometry, v, is adjusted for
minimum conversion loss, L;. Now assume that the
geometry is changed (e.g., the contact area is reduced)
so as to halve the Cy's and the g,’s. Then assuming that

2 Jbid., p. 408.
% Thid.. p. 409,
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one readjusts ¥, to minimize the conversion loss again
to the value Ls, L; and L, will be equal.

Torrey and Whitmer point out that for negative gg the
barrier capacitance must be strongly nonlinear, i.e.,
C:/Cy or C;/Cy must be large. It should be noted, how-
ever, that L depends on all the elements of the admit-
tance matrix and that therefore as long as C: and C; are
finite there will be some high frequency at which the
nonlinearity of the barrier capacitance will play a role
in determining L. For example, from v,s, (14), no matter
how small C; is there will be some frequency at which
wC; will be of the same order of magnitude as gi.

It is clear that Y7, (14), leads to absurd results if g
or go are set equal to zero. This is a result of the assump-
tion in Torrey and Whitmer that the intermediate fre-
quency B is such that B8C;<g;. This restriction, which is
usual in microwave mixers, may be removed if desired.
This has been done in some recent work at the Bell Tele-
phone Laboratories.® Only the case of the pure non-
linear capacitance is considered, but some new effects
show up which are not in evidence when 8C; is assumed
negligibly small compared with g;. Throughout this
paper it is assumed that SC;<g;.

As Torrey and Whitmer point out, the region on the
¥, plane corresponding to negative gg adjoins regions of
either arbitrarily large gg and/or arbitrarily small gs. In
the latter case, since W remains finite, it is clear that L
is arbitrarily small in the same region. One would like
to know the behavior of L in the region in which gg is
arbitrarily large. The condition for gg=o is
B2 +Go? =g+ w2(,?, where Go=go+gs, Bo=0bo+wC.%
Since Torrey and Whitmer do not give an equation for
W, it is presented here.

L 1= () /Gt B G+ B
8a g:? [(Go—g2)2+(30"wc2>2]
It is seen that W goes to zero {or the same condition. If,

however, one calculates the product ggW the following
expression is obtained:

Go* + By — (g* + (¥
(Go* + Bo?)?

(15)

L=Wg =MN (16)

where

=l <0
(-5 e} an

_ (Go* 4 By?)?
8:812[(Go — g2)2 + (By — wCs)?]

N (18)

2 M. C, Waltz, A, E. Bakanowski, and A. Uhlir, “Second Interim
Technical Report on Crystal Rectifiers,” Bell Telephone Labs., Task
8, Signal Corps Contract DA 36-039 sc-5589; January 15, 1955.

% Torrey and Whitmer, op. cit., p. 409. See (15).
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and G is defined in Torrey and Whitmer.?? Thus, the
condition in question gives an infinite gg but a conver-
sion loss of zero. One can now make the statement that
for the broad-band case, negative gz regions are always
associated with arbitrarily high gain, regardless of
whether gg goes to infinity or to zero at the boundary of
the negative gz region. Note the use of the term “arbi-
trarily small.” The mere fact of conversion gain, 7.e.,
L <1, is not particularly significant since mixers are not
connected in tandem to obtain a large over-all gain. The
quantity of interest is the over-all receiver noise figure
which is given by F,=L{¢-+} F,—1), where F, is the over-
all receiver noise figure, ¢ is the noise temperature ratio
of the mixer, and F, is the noise figure of the IF ampli-
fier. It is clear that a mixer with L=1.05 is very little
worse than one with L =0.95 in spite of the fact that the
latter mixer shows conversion gain. A mixer which can
have an arbitrarily small  is quite a different matter
however. The important question is then what happens
to £ when L is small. At present this question cannot be
answered without resorting to experiment.

Case 2

Assume that 7 is finite, but that the image can be
shorted at the barrier. This is impossible in principle if
7 is frequency independent, since 1/ would be the
largest admittance which could be connected to the
image terminals. The requirements for approximating
the above are given by (92)—(95) in Torrey and Whit-
mer,?® and it can be shown that these requirements are
reasonable if 1/r>>wC,. Obviously at sufficiently high
frequencies this condition will not be met. Assume that
the frequency is such that g;<wC;. The above two as-
sumptions are not mutually exclusive. Assume the maxi-
mum nonlinearity, gi=go=g¢, Ci=Cy=C. Finally, as-
sume that gr<1. The last condition is almost always
met. Then??30

YVae Vs iwC  joC
V= = :I (20)
YVoua Yep g g
1 jwCr  juC
le: + jwCr  juw 7]. (1)
rg 1
b=1— juCr;
by = 1;
b = — rg; (22)
b21 = - ij?’;
boe = 1+ juCr.)

27 Ibid., p. 409.

28 Thid., p. 136.

29 Jbid., (92)-(95); and also, p. 408 (11).

3 Ibid., p. 409. Note that in the narrow-band high-frequency case
presented above, the region of negative gg is adjacent only to a region
of small gg and not to a region of large gg. Note also that W possesses
1o nontrivial singularities.
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Y= (1/0)7. (23)
L = ggW (24)
where
1 a _{_ a(l/ 2
W=——-—~—-—ly f‘,l (25)
&a Iyﬂa B
1 | bya+ juC|?
o L 10petjeCl 26)
ga g
221+ (wCr)2] 4 ba*[1 + (wCr)?]
1 — £2.(2wC? b,(20C) + (C)?
" Bu27CH) o 020) + (O
8a g
g iwCg/b?
Yo= - (28)
b n jaC
Ya b
1 JwCyg
ys = *—(g - M——“> (29)
b bye + juC
For zero spreading resistance
W = —— [ + (b0 + 00)?) (30)
af
joC
v =g (1 - ————)
Ya + jC (31)

C)? Cb,
: (wC)? + w 0].(32)
ga> 4+ b+ 2b,00C -+ (wC)?

g = Re (35" = g[l -

If we are interested in small values of L, we can focus
our attention on g since W cannot approach zero or in-
finity for any nontrivial case. Consider the condition for

gs=0:

22 + (B — 0.56C)? = 0.25(wC)2 (33)

On the v, plane, this is the equation of a circle with
center at 0, —0.5 wC and radius 0.5 wC. If W does not
approach zero, and it does not, then points outside the
circle and arbitrarily close to the circle will give arbi-
trarily small conversion loss. Points inside the circle
yield negative IF conductance which presumably is to
be associated with IF oscillations, and the equation for
L does not apply. The situation is quite similar to the
broad-band case.?® It is presented here because to the
author’s knowledge it has not appeared in the literature
and yet the equations are shorter and it is a simpler case
to understand than the broad-band one. A consideration
of L as a function of frequency will yield some interest-
ing results. Suppose that one considers C and g to be
fixed and w and v, to be such that the point v, is a con-
siderable distance away from the circle. Then L will be
given by Wgs and will be large if v, is far enough away
from the circle. However, as the frequency is increased
while y, is held constant, the conversion loss will de-
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crease, approaching zero as the circle approaches y..
Thus, we have a conversion loss that decreases as the
frequency increases. It is quite clear that one pays for
small L in terms of bandwidth., For y, must be reason-
ably close to the circle for small L, but a change in fre-
quency will in general move y, with respect to the circle,
not only because the circle moves but also because in
general y, is also a function of {requency. These two
effects could conceivably cancel over a small-frequency
band. If y, moves inside the circle then the oscillatory
condition holds and if v, moves too far away from the
circle, L increases.

Returning to the case 0, let us set y,"=y,b and
define a function

JoCg

-y 34
fy) =g s (34)

Then from (31),
y8'(ya) = f(ya)y =0 (33)

while from (29),

1

Ys = —gf(ya’), r # 0. (36)

Note that ys° is considered a function, while ys is not.
Then
jwC
-2 ] e
ga' +j(ba" + «C)

Of course, ¥, is arbitrary; 7.e., we assume y, is under the
control of the circuit engineer and can be made to as-
sume any value. The question arises as to whether or
not v, is also arbitrary, for if it is, the effect of the
spreading resistance on yg is simply multiplication by
the factor 1/b. Now

14 juCr
Vs g|1

N I:L?wc 7)?

yo' = g + jb = (1 — jorC)(ga + jba);
2 — wCrby
1+ (@Cr)?

24 — wCrba’]
1 4 (wCr)?
From (38), some values of &, will require a negative
g, for solution. This is not physically acceptable; how-
ever, if b,’ is limited to negative values, a positive g,

will always satisfy (38). Assuming that b,’ is limited to
negative values, (29) gives

8o = (38)

ba

b + wCr [ (39)

(1 + juCr) [g5°(gs’, ba)

e I—{— (wCr)?
+ jbs"(gd', ba') ] (40)
and
1
= ——— g, b)) — wCrbg®(gd’, ba' 41
gs 1+(wCr)2[ga(g ) — «Crbg(gd, b)) (41)
where

y%(ya) = g6°(8d’, ') + 70s°(gd, b)) = f(wa'). (42)

January

The factor 1/[1+ (wCr)?] affects the magnitude of g5 but
is not a factor in determining whether or not gg becomes
negative. From (31)

C)2gg,’
(wC)’gga'r } 43)
g2 + (b + C)?

—_ 0 ’ I3

88 1+ (wC?’)2 l:gﬁ (ga s ba) +
This equation shows, and it is quite clear intuitively,
that the presence of finite spreading resistance always
decreases the possibility of obtaining negative gs, and
shows precisely the condition for negative gg with finite
spreading resistance in terms of the value of gs without
spreading resistance. Of course, gg is given by (32). Eqgs.
(8), (27), and (43) can be used to calculate L when gs is
positive.

Case 3
Suppose # =0 and the image is shorted. Then*

, o .
Yzy,=[go+on gt jo 1:| (44)
g1 go
and, from (7)
85y _ (@0%/20)(80+ go) + (@Cigi/go)(wCo + ba) (43)
£o (g0t ga)* + (@Co + 84)*

To investigate the conditions for gz=0, the numerator
and denominator of the fraction are set equal, and with
a little manipulation the following equation is obtained:

2 2 C 2
o (om0« o e )
2g0 2g0

4g02

(g1 + wCi?). (46)

This is the equation of a circle in the y, plane with
center at

and radius squared of

g1 5
e °Cy2),
igo? (g1 + w?Cy?)

Note that both coordinates of the center of the circle are
always negative. The general condition for gz to be
negative with a physically realizable vy, is that the radius
be greater in magnitude than the x coordinate of the
center of the circle. Thus a low-frequency cutoft for
negative gg can be calculated by setting the radius of the
circle equal to the x coordinate of the center of the circle.
Some special cases are of interest. For the case of a linear
capacitor, C;=0, the center of the circle is at
(212/2g0) —go; —wCo and the radius squared is

3 Ibid., p. 408.
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gt

4g02

Since g1 £ go, all points inside the circle can be shown to
correspond to negative g,, and this is physically inac-
ceptable. Just as in the broad-band case, then®: negative
IF conductance is not obtained with a linear capacitor.
Note, however, that one of the conditions, which is cer-
tainly not met in practice, is that the LO voltage wave-
form be symmetrical. To the author’'s knowledge, the
more general case has not been investigated, although
there is experimental evidence® that relaxation of this
restriction will not change the picture.
82 Thid

32 H. Q. North, et al., “Welded Germanium Crystals,” GE Rep.,
Contract OEMsr-262, Order No. DIC 178554 ; September 20, 1945,
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If one sets go=g1=g and Co=C,=C, <.e., maximum
nonlinearity for both the barrier capacitance and con-
ductance, the center of the circleis at —0.5 g, —0.5 wC
and the radius is 0.5v/g?40?C% Thus, in this special
case there is no low-frequency cutoff for negative IF
conductance.

When gg is not negative, W is of interest and is given

by
(g0t ga)* + (ba + wCo)? _
gag1?

w

(47)
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Resonance Propetties of Ring Circuits+

FRIEDRICH J. TISCHER}

Summary—The ring guide or ring circuit, a microwave device
consisting of a waveguide having the ends connected to form an
annular ring, has properties similar to those of ordinary resonant
cavities. Wave propagation within the ring guide, its interaction with
a waveguide to which it is coupled, and its resonant circuit properties
are investigated in this report. The properties of a prototype circuit
consisting of a ring guide of rectangular cross section were found to
agree with theory.

INTRODUCTION

AVITIES with conducting walls have, at wave-
C lengths of the order of their geometrical sizes, the

same electromagnetic properties as resonant cir-
cuits consisting of capacitances and inductances at lower
frequencies. Therefore, cavities are useful as resonant
circuits and filter elements at microwave {requencies.
They can also be considered as waveguide sections short
circuited at each end. The electromagnetic energy oscil-
lates between the electric and magnetic states. Standing
waves and an imaginary Poynting vector are of signifi-
cance at any point in the cavity.

A new type of microwave circuit! consists of a wave-
guide having the ends connected to form a ring in which
waves progressing in one direction onlv are excited, This
circuit is characterized by a real Poynting vector within
the ring guide cavity. Properties of the circuit, including

* Manuscript received by the PGMTT, June 14, 1956. The re-
ported work was performed under Contract Tul1-9004.

1 Dept. of Elec. Eng., Ohio State Univ., Columbus, Ohio. For-
merly at Res. Labs., Redstone Arsenal, Huntsville, Ala.

1E. J. Tischer, Swedish Patent No. 152,491; August 26, 1952.

the form of wave propagation within the ring, interac-
tion with a waveguide to which it is coupled, and its
Q-value, are investigated. Circuit performance when
excited to produce traveling waves in one direction is
compared with that obtained when excited to produce
waves in both directions.

WAVE ProrPAGATION IN THE RING Circuit WHEN
CoUPLED TO A WAVEGUIDE

The system under investigation consists of a wave-
guide to which a ring guide is coupled as shown sche-
matically in Fig. 1. In order to obtain waves progressing
in one direction only in the ring, directional coupling is
used. When nondirectional coupling is applied, waves
progressing in both directions are obtained. These two
types of coupling are shown in Fig. 2, 4.e., directional
coupling by two holes spaced a distance of \,/4 apart
and nondirectional coupling by a single hole.

In the following derivation based on the wave con-
cept, b indicates the waves progressing toward the
coupling element, while » corresponds to waves re-
flected and traveling from the coupling element. The
symmetry plane A4, Fig. 2, is used as phase reference.
The ports of the main waveguide are 1 and 2, while
those of the secondary guide which will be connected to
form a ring are 3 and 4. The other parameters which
describe the wave propagation in the region of the junc-
tion are the reflection coefficients p,, at the four ports
and the transmission coefficients 7', between the dif-
ferent ports with reference to plane A4°.



