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through, starting from an insertion loss function of

allowed form. His procedure parallels that used in our

numerical example. He does not introduce a complex

variable equivalent to p, however, and thus does not

have Richards’ theorem available for proving physical

realizability. In particular, he makes no point of the

second condition for the physical realizability of an im-

pedance function. Ozaki and Ishii,ll clearly state this

second condition, but they do not parallel Darlington

11H. Ozaki and J. Ishii, “Synthesis of transrnissiomline net-
works and the design of uhf filters, ” IRE TRANS., vol. CT-2, p. 325-
336; December, 1955.

by starting from a given insertion loss function. E.M.T.

Jones in the 1956 IRE CONVENTION RECORD uses aLcom-

plex variable, but he makes no mention of the second

condition for physical realizability, and appears, in his

proof of physical realizability, to have appealed to

Richards for a theorem which Richards did not prove.
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An Analysis of the Diode Mixer Consisting of Nonlinear

Capacitance and Conductance and Ohmic Spreading

Resistance*
ALAN C. MACPHERSON~

Sunwnary—A method is presented for calculating the mixer ad-

mittance matrix Y’ which results when an ohdc impedance is con-

nected in series with a diode mixer described by an admittance

matrix i’. There are no restrictions on the frequency dependence of

the ohmic impedance nor on the number of harmonic sidebands con-

sidered. The equations are worked out in detail for the “low Q>>

case in which signal, image, and intermediate frequencies are con-

sidered, and it is shown that Y’ in this case is “nearly low Q.$> As a

result of this analysis the usual criterion for good high-frequency

mixing, i.e., that the product of the spreading resistance and the

barrier capacitance be small compared with unity, is criticized and a

new figure of merit is proposed.

Explicit formulas have been derived for calculating the elements

of Y’ when Y represents the parallel combination of a nonlinear con-

ductance and capacitance. In general, these formulas are cumber-

some, but three special cases have been considered in detail.

Case I: Zero spres ding resistance and equal admittances con-

nected to image and signal terminals. Results: a) The conversion

gain is independent of the contact area. b) Regions of negative IF

conductance are always associated with arbitrarily high gain.

Case 2: High-frequency, small spreading resistance, image

shorted across nonlinear conductance and capacitance. Results:

a) The conversion 10SS and the IF admittance can be given by closed

equations. b) The IF conductance can be negative. c) Regions of

negative IF conductance are bounded by regions of arbitrarily small

IF conductance. d) The conversion loss can decrease with increasing

frequency. e) Low conversion loss is accompanied by narrow band-

width.

Case 3: The spreading resistance is zero and the image is shorted,

Results: a) Above a certain frequency negative IF conductance is

obtained and arbitrarily low conversion loss is possible. b) The

situation is quite similar to that of Case 1.

* Manuscript recei~,ed by the PGMTT, May 18, 1956.
t Naval Research Lab., Washington, D C.

Measurements of mixer performance at the “available terminals”

are discussed and the failure of the 1‘phenomenological theory of

mixing>) as a basis for making such measurement ts is emphasized.

INTRODUCTION

T

HIS PAPER will be concerned principally with

the mixing properties of the circuit of Fig. 1 (next

page), where arrows indicate that g and C are func-

tions of the voltage across them, Frequent reference will

be made to Torrey and Whitrnerl and whenever possible

the notation used therein will be followed here.

The circuit of Fig. 1 has been widely used, qualita-

tively at least, as an equivalent circuit for point-

contact crystal diodes, z particular y for microwave ‘work

in which the capacitor is of importance. The part c)f the

crystal diode that Fig. 1 is supposed to represent is

shown in Fig. 2. The terminals are at the dotted lines

AA’ and BB’. The distance from the line AA’ tc~ the

surface is a small fraction of the shortest wavelength in-

volved, while the line Bl?’ is located so as to include

nearly all of the spreading resistance. It can be shown

that the latter requirement will be fulfilled if BB’ is
several times the contact diameter away from the con-

tact region.

The validity of the circuit of Fig. 1 as a representation

of Fig. 2 is open to question. It has been verified in the

1 H. C. Torrey and C. A. Whitmer, “Crystal Rectifiers, ” McCkaw-
Hill Book Co., Inc., ??ew York, N. Y.; 1948.

2 Ibid., p. 24.
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Fig. l—Small-signal equivalent circuit.
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Fig. 2—Point-contact crystal diode.

several megacycle range for silicon point-contact crys-

tals. Analysis of the mixer properties of this circuit yields

negative IF conductance under certain conditions. This

has been observed in H. Q. North’s welded-contact

crystals.8 The actual equivalent circuit is probably at

least as complicated as Fig. 1.

The region under consideration is clearly only part of

the crystal diode; in addition, there is the rest of the

whisker and semiconductor and various components

necessary for proper support and protection. These com-

ponents, however, are nearly Iossless and are certainly

linear so that the effect is simply that of an impedance

transformer and need not be explicitly considered. In

choosing the terminals discussed above we have in-

cluded the region of the nonlinearity and the region of

the important losses. The use of the “low-frequency”

concepts of voltage, current, and lumped components is

justified, if, to put it roughly, the distance between AA’
and BB’ is small compared with a wavelength. For com-

8 Ibid., p. 398.

mercial crystals designed for a minimum wavelength of

about 4 cm, the contact diameter is less than 0.001 inch,

so that the condition is well met.

The central engineering problem of a microwave

mixer is to relate the small-signal parameters to quan-

tities of interest when the crystal is operated as a mixer

—decidedly a large-signal nonlinear problem. The be-

havior (except for noise considerations) of the mixer is

completely specified when values are obtained for the

elements of the mixer admittance matrix. The situation

is much like that encountered in the theory of linear

n poles, except that each terminal pair is associated

with a different low-power-level frequency. Since an in-

finite number of these frequencies exists in the mixer,

the admittance matrix is an infinite one. Once the ad-

mittance matrix is known, the conversion loss, IF ad-

mittance, etc., can be calculated when specified admit-

tances terminate each pair except the IF terminal pair.

The complete circuit of Fig. 1 has not (to the author’s

knowledge) been quantitatively treated in the literature.

The case in which C is assumed linear has been treated

rather thoroughly.4 The case in which r is zero but both

g and C are nonlinear has been partial] y treated,5 but

only with respect to the spectacular effect of negative

IF conductance which the nonlinear C makes possible;

there is in this reference no calculation of conversion loss

and no quantitative information on the effect of spread-

ing resistance. Only the broadband (signal and image

admittances equal) case was treated by Torrey and

Whitmer. One of the purposes of this paper is to point

out that at sufficiently high frequencies, the nonlinear

capacitance in Fig. 1 can have an important effect on

the properties of the mixer even though negative IF

conductance does not appear. Negative IF conductance

may not appear for one or both of the following reasons:

C is not sufficiently nonlinear, or the spreading resistance

is too large. The properties of the barrier conductance

also have some influence.

TREATMENT OF SPREADING RESISTANCE

In a mixer there are an infinite number of frequencies

at low power levels. It is customary to consider only

three of these” the signal, intermediate, and image fre-

quencies.G This approximation becomes increasingly

poor for low-loss mixers. Since the inclusion of nonlinear

capacitance can result in a mixer with zero conversion

loss, the general treatment will be for any number of

low-level signals.

A generalization of Fig. 1 may easily be made (in

principle) as follows: the spreading resistance r may be

considered complex and may be different for each low-

level frequency of interest. he t“spreading impedance”

will therefore be denoted by z., where n denotes the

frequency.

d Ibid., p. 157.
5 Ibid., p. 406.
b Ibid., p. 111.
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This might be useful if, for example, one wished to

include the catwhisker (which has a different impedance

at signal than at IF frequencies because of its inductance

and skin effect) in the spreading impedance.

Assume that the admittance matrix Y of the mixer

not including the z.’s, is known. Now, Y may be any-

thing, and will at first be kept general, but the case of

most interest at present is that in which I? is the

admittance matrix of the circuit of Fig. 1 with ~ = O. The

latter is given by Torrey and Whitmer7 for the most

general case (arbitrary number of terminal pairs, arbi-

trary LO voltage waveform) and specialized to a con-

sideration of signal, image, and intermediate frequen-

cies only,8 and with the local oscillator voltage (LO)

waveform restricted to even functions.

The frequencies of interest can be expressed as /3+nu

where (i is the intermediate frequency, n is a positive or

negative integer, and u is the LO frequency. Current and

voltage at the frequency O+ nw will be denoted by i.

and v., respectively. Then 1 = YV, where 1 and V are

column matrices formed from the i.’s and the Vfl’s.

If in’ and v.’ are the new values after the addition of

z~, then i~’ = t. and v~’ —i~’z~ =vn. These equations are

substituted into 1 = YV and the inns are solved for in

terms of the vn”s. The coefficients of the v.”S are the

elements of the new admittance matrix Y’ which de-

scribes the original matrix with the spreading im-

pedance added.

The calculation is straightforward and the results can

be given as follows: form the diagonal matrix Z whose

elements along the diagonal are the zn’s. Next form the

matrix B = Z Y+ 1, where 1 denotes the unit matrix.

Calculate b, the determinant of B, and all of its cofactors

b,,, where Y and c denote row and column, Then, y,c’,

a typical element of Y’, will be given by

y+-c’=(~h<.)/b,
where the unprimed y’s are the elements of Y.

To illustrate the procedure, and for future reference,

the equations will be worked out for the case of the sig-

nal, image, and intermediate frequencies in the notation

of Torrey and Whitmer.

At this point Y is arbitrary and can be written

[1

yea *tip ylq

Y = yfla ypp yfl~ . (1)

YW $76 Y“/”/

Assume, as is customary, that the z,,’s are all real and

equal. Then

[1

roo

Z=ovo

00?’
(2)

7 Ibid., p. 165.
S Ibid., p. 408.

[

1 + y..v yclpr ya-(r

B= ZY+l= ypd’ 1 + y@@Y YW

1

(3)

yv.$’ ‘vVp’ 1 + ;y7#’

and

Y=F-j ; ;]

where

by..’ = ycz.bn + y~czbzli- ywb.n

by.fl’ = yeobll + ypbb~l + yyob~l

by.,’ = ycwbn + y~,bn + ywbu

byoa’ = ya.blz + yfl.bn + y~.bu

by flfl’ = ya~bls -t ybpbm i- y~pb~z

byfly’ = ya~bu + y~~bss + ywbw

by~.’ = ymbls + y~abn + ywbas

by~b’ = yciobn + y(mbiz + y~abzt

byY7’ = ywbu + yo~bn + ywbw

It is usually assumed that ypfl is real and that there are

no circuits in the mixer which can discriminate between

the signal frequency and the image frequency, i.e.,

Y~~ = Ya~4, Ym ‘Ym*7 YW =Ya~*, and YY~ =Y..*, where the

asterisks denote complex conjugates. If the preceding

four conditions are all met, one says, by definition, that

the mixer, or the mixer admittance matrix, is “low Q. “g

Then,

“E* :.21

It can then be shown that bzz= bll*, bsl ==bit,*, bzs= b12*,

bzl = b23*, and bzsis real. From these relations and (5), it

follows that yap’ = YTO’*, y..’ =Y77’*, y?.’+ =:y.v’,

YB.’ = YO,’*, and byfi~’ is real. Since b is not, in general,
real, ypd’ is not real and the mixer is not low Q. A mixer

which meets all the requirements of a low Q mixer except

that y8P’ be real will be termed “nearly low Q.” If the

time zero is properly chosen, 10yb.’ can be made rea~ and

then

“=[?. 3* E:J

There would seem to be little point in presenting the

long expressions for the y“s but, since each bii appears

several times in Y’, the following formullas may be

g Ibid., p. 115.
10 Ibid., p. 117.

(4)

(5)
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useful

bll = (1 + gflflr)(l + ya.*r) – $’2YaP*Y13a*

bl~ = Y2yBay@*– y.7*Y(l + g@’)

blz = ?’2yBa*y.Y*– Yyfl.( 1 + ym*~)
(6)

btl = ?’2ya7y@*– YY.0(1 + ycu*fl)

bz2= ll+yti#[2–r21ya,12

b = (1+ yaav)bll + ycflybn + y.~ybu.

Finally, in order to compute J?’ for the circuit of

Fig. 1, one uses for Y the formulas in Torrey and

Whitmer’1 for the general case (LO waveform arbi-

trary), or those for the case of LO waveform ‘(even. ” 12

At microwave frequencies the terminals to which Y’

refers are not available for measurement. If for example,

one is dealing with a waveguide mixer, impedance meas-

urements must be made in the waveguide at some

distance (so that higher modes will die out) from the

terminals to which Y’ refers. In addition, there will be

“parasitic” impedances associated with the mechanical

mounting of the point on the crystal. This problem may

be present to a lesser extent for the intermediate fre-

quency. One can formally handle this by connecting a

four-pole (usually nearly lossless) on each of the terminal

pairs. A new admittance matrix will result, Y“, which

describes the mixer at terminals which are actually

available for measurement. It is intuitively clear that

if all the four-poles are linear and if the four-poles con-

nected to the signal and image terminals cannot dis-

criminate between these two frequencies, Y” will be

nearly low Q. The proof would be quite similar to the

above proof that Y’ is nearly low Q and has been given

in essence by Peterson and Llewell yn. 13 The fact that

these authors were treating the case of the linear capaci-

tance is immaterial.

QU~LIT~TIVE STATEMENTS CONCERNING THE EFI?ECT

OF FINITE SPREADING RESISTANCE

There is a frequently employed argument that for

good high-frequency performance, uCr should be much

less than one. In the first place, since the barrier

capacitance is a function of bias, it is not clear what is

meant by C in the above expression. Presumably one k

to assume that the barrier capacitance is linear. Even

so, the above criterion does not appear to be useful or

accurate. Consider the two extreme instances, the first

in which w Cr is small because r is very small while u C

is finite, and the second in which o-Kr is small because

UC is very small, while r is finite. If the above criterion

11Ibid.. n. 166.

is correct, these two cases should give about the same

high-frequency performance. In the first case, the low-

frequency conversion loss will be low (assume that in

both cases the barrier conductance is sufficiently non-

linear), and the high-frequency conversion loss will be

identically low. This is true because of the general

theorem that a reactive network placed in tandem with

a four-pole does not change its conversion loss. Or, if

proof for a particular case is desired, (15) in this paper

and (17) in Torrey and Whitmer, 14may be used to calcu-

late the conversion loss L. It will be noted that tiCO,

where CO is the linear capacitance, appears only in the

combination w CO+ ba and since b. is arbitrary, L will be

independent of frequency. In the second instance, how-

ever, L will be very high for both the low-frequency and

the high-frequency case.

The case of the linear capacitor is treated in Torrey

and Whitmer, 15 and the equations for the elements of

Y’ are also given. 16 The quantity CJCY does appear re-

peatedly, but this is not the whole story by any means

since r appears in other ways also. This must be so, be-

cause obviously, in the low-frequency case, in which

OJCOis negligible, large r will impair the performance.

One would like to enunciate a rule or rules of thumb

for low L for the circuit of Fig. 1 at all frequencies. It is

clear that the requirement on r is that the elements of

Y’ be nearly equal to the elements of Y. Eq. (5) indi-

cates that the requirements on b and the bij’s are that

b and bll be close to one and that bla, bzl, and blt be

nearly zero. Eq. (6) shows that the only conditions

which will simultaneously satisfy the above conditions

are that y?j~ be small compared with one. Using (6), one

obtains the result that gy<<l and wC,r<<l. Since gl and

g~ must be equal to or less than go, and Cl and Cz must

be equal to or less than Co, it is sufficient to require that

gor and tiCo~ be small compared with one. Adding con-

rlitions for nonlinearity, one can say that at low fre-

quencies the requirements are glg2/g02~l and gor<<l

while for high frequencies the additional requirements

are Cl C2/C02~l and aCW <1. Perhaps it is not too far

fetched to propose, for an over-all wideband figure of

merit, that glg2Cl CJg03COSr2 be large compared to one.

For the point-contact geometry, r increases as the

diameter of contact decreases while the Ci’s and g,’s de-

crease with the area of contact. 17 This is a possible ex-

planation for the well-known fact that, particularly for

high frequencies, small contacts are necessary for low

L. It is worth pointing out that this is due completely

to the geometry of the point contact which is roughly

planar for the CJS and gi’s but three-dimensional for

r. In a completely planar geometry, for example, L
would be independent of the cross-sectional area.

It Ibid.: ~. 408. N T~rrey and \Vhitmer, op. cit., P. 409.

13 L. C. Peterson, and F. B. Llewellyn, “The performance and 15 Ibid., p. 157.
measurement of mixers in terms of linear-network theory, ” PROC. 16~bid., p. 160.
IRE, vol. 33, pp. 458476 ; July, 1945. 17 Ibid., p. 98.



1957 McPherson: An Analysis

OPERATIONAL IMEANING OF THE ELEMENTS OF Y”

Probal~ly the most straightforward and elegant way

to measure and express the properties of a mixer is by

means of the elements of Y“. This information, after all,

completely describes the properties of the mixer at a

given bias and LO drive, just as the elements of the

admittance matrix of any linear n pole described its

properties. Equipped with this information the engineer

can calculate the conversion loss, the IF impedance, and

other properties as a function of the signal and image

termination.

In Torrey and Whitmer 18 there is a discussion of what

is called the Phenomenological Theory of Conversion

(PTC). According to this theory, one can calculate the

elements of Y” for the case of signal, image, and inter-

mediate frequencies from a series of measurements of

the rectifying properties of the crystal made at LO power

levels; the theory does not appear to be applicable to

the mixer which includes a nonlinear capacitance. Dur-

ing the war almost all the measurements of the elements

of Y“ were based on the PTC, and at the present time

the JAN specifications are based on this method. Never-

theless, the method is highly questionable, particularly

if the capacitance is nonlinear. It would therefore seem

pertinent to outline a general method for measuring the

elements of Y”, regardless of the equivalent circuit of

the mixer. The equations for mixer IF admittance yd

ancl for mixer conversion loss L arelg

(7)

and

L = Wg@ (8)

where

(9)

As before, a, ~, and y refer to the signal, intermediate,

and image frequencies, respectively; the Y,j’s are the

elements of the 2 X 2 admittance matrix Y2, which is

formed from the 3 X 3 matrix Y“ by specifying a termi-

nation at the image terminals; ya is the signal admit-

tance; g. is the real part of y.; and g~ is the real part

of y~. The relationships between the elements of Y”

and Y~ arezo

Y.7Y.7*
Y.. = y.. –

ym* .+ Y.*

Yalj = Jo@–
Y.? Yd&

yaa* + Y.*

(10)

(11)
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YW*Y13U*
Yaa = ype = (12)

yea* + yc*

Yfl~ = y~fl –
y@*yafi*

( [3)
yee* + y.*

where y. is the admittance at the image terminals. Note

that the capital letters indicate the elements of Yz and

the small letters indicate the elements of Y”, For con-

venience, the elements of Y“ are not primed.

It is knownzl that yda can be made real by a proper

choice of the origin of time. If Yda is a particular value

of y@a for some particular choice of time zero, then the

general form of yPa is: y~a = exp ( —jwtO)ye. where to is

arbitrary. In the same way, y~y = Y.Y exp (~j~~o) and

y.. = yaw By substituting into (12), the following gen-

eral expression for Y8~ is obtained: Yea = exp( --.jwto) l’oti,

where Y6a is a value of Yda for some choice of time zero.

Now YPa is in general complex, but by proper choice of

tij, Yda can be made real. In what follows it is assumed

that Ypa is real and it will be denoted by G6~.

The parameters to be measured are the elements of

Y”. The general procedure is as follows: first, set ya at

some known value, y.r. Second, measure y~ for three dif-

ferent known values of ya. Eq. (7) can now be used to

solve for Yfler, Yatir, and I’aPrG6.r, the I’s corresponding

to the value of y,. Third, L and gp are measured for ~lny

known value of ya, and from (8) afid (9), Gpar is lob-

tained. L can be measured by any reliable method such

as the heterodyne method22 using either a cw or nclise

signal, and go can be measured with an rf bridge. Thus,

a complete set of Y,j’s is obtained. The above proced m-e

is repeated for a different value of y. and a second set

of Y,j’s is obtained. This is more than enough informa-

tion to solve for the elements of Y“ by using (10)

through (13) twice.

The practical measurement is complicated by the fact

that y. and y, are not easily varied independently, This

is because the waves associated with the two admit-

tances are located physically in the same transmission

line. Thus one must resort to frequency-sensitive termi-

nations in order to vary ya and yc independently. It ap-

pears that an excellent pair of choices for y. would be

infinity and zero, for then Yi,lz = yij and the only re-

maining unknown would be yay. Then from (11)

Y~~ can be obtained. The above method would appear

to be practical. The values infinity and zero for y. can

be approximated by i,.seAng a transmission type csvity

in the line tuned to the signal frequency. Variation of

ya could be accomplished either by varying a termina-

ls Ibid., p. 119.
19Ibid., p. 136.
20 Ibid.

21Ibid., & 116.
22Ibid., p. 200.
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tion on the far side of the cavity, or by detuning the

cavity (ya would have to be measured with, for example,

a standing-wave machine). In the case of yC, it could

probably be assumed that the corresponding standing-

wave ratio would be infinite. Note that no microwave

impedance measurements at the microwatt level are

necessary. Since the author has never made measure-

ments of this type, he cannot vouch for the success of

the above method. Nevertheless, it clearly demon-

strates the operational meaning of the elements of Y“.

CALCULATIONS OF L, yd, AND g8

Once the admittance matrix Y’ has been calculated

by the procedure given under the section on “Treatment

of Spreading Resistance,” (7), (8), and (9) can be used

to calculate L, ye, and gp. It is clear that for the general

case, these equations will be extremely complicated.

There is an additional complication owing to the fact

that, in general, one wishes these quantities as a function

of ya and y., It would appear quite feasible, however, to

make numerical calculations, particularly if a computer

is available, and it is planned to do so. However, if one

chooses highly idealized cases some manageable equa-

tions can be obtained.

Case 1

Assume that r = O, and that the image and signal are

terminated with equal admittances (broadband case).

Insofar as gd is concerned, this case is treated in Torrey

and Whitmer. 23 For convenience, Y, which in this case

is equal to Y’, is reproduced here:

r

gO + @CO gl + @Cl g2 + @C2

Y’ = g~

1

go gl 1. (14)

gz -- j@c2 gl – jwcl go – jtico

There are some additional relationships which are not

mentioned in Torrey and Whitmer: Cl ~ Co, CZ ~ Co, and

2 C12/C0 ~ Co + Cz. These relations hold for the same

reasons that the equivalent ones hold for go, gl, and gz.t4

The statement is frequently made that when the fre-

quency is high, the area of the point contact must be

made small in order to reduce the capacitance. This is

not true, however, when r = O. The Ci’s and the gi’s are

so intimately related to each other that a decrease in

contact area, which would reduce the C~’s wouId reduce

the gi’s by the same factor. In other words, g,/Ci de-

pends only on the character of the potential barrier and

not on the geometry. Now L is a dimensionless quantity

which depends on the gi’s, the C%’s, and y. which is arbi-

trary. Assume that for some geometry, y. is adjusted for

minimum conversion IOSS, L1. NOW assume that the

geometry is changed (e.g., the contact area is reduced)

so as to halve the Cj’s and the g,’s. Then assuming that

2sIbid., p. 408,
24Ibid., p. 409.

one readjusts ya to minimize the conversion loss again

to the value L?, LI and Lz will be equal.

Torrey and Whitmer point out that for negative g6 the

barrier capacitance must be strongly nonlinear, i.e.,

C,/Co or C,/CO must be large. It should be noted, how-

ever, that L depends on all the elements of the admit-

tance matrix and that therefore as long as Cl and C2 are

finite there will be some high frequency at which the

nonlinearity of the barrier capacitance will play a role

in determining L. For example, from ya8, (14), no matter

how small Cl is there will be some frequency at which

uC1 will be of the same order of magnitude as gl.

It is clear that Y’, (14), leads to absurd results if g,

or go are set equal to zero. This is a result of the assump-

tion in Torrey and Whitmer that the intermediate fre-

quency @ is such that f3Ci<<g~. This restriction, which is

usual in microwave mixers, may be removed if desired.

This has been done in some recent work at the Bell Tele-

phone Laboratories. 25 @IY the case of the pure non-

linear capacitance is considered, but some new effects

show up which are not in evidence when ~Ci is assumed

negligibly small compared with g{. Throughout this

paper it is assumed that flCKgi.

As Torrey and Whitmer point out, the region on the

Y= plane corresponding to negative gp adjoins regions of

either arbitrarily large gd and/or arbitrarily small g8. In

the latter case, since W remains finite, it is clear that L
is arbitrarily small in the same region. One would like

to know the behavior of L in the region in which gfi is

arbitrarily large. The condition for g~ = m is

B02+G02=g,2+u2CZ2, where GO =gO+ga, BO=bO+tiCo.26
Since Torrey and Whitmer do not give an equation for

W, it is presented here.

1 [1 – (gzz+u2Cz2)/(Go~+B02) ]2(G02+B(?)2
w=_

g12[(Go–gJ2+ @o-~CJ’]
. (15)

g.

It is seen that W goes to zero for the same condition. If,

however, one calculates the product ge W the following

expression is obtained:

Go’ + B02 – (gZ2+ C02CZ2)
L = Wgfi = MN

(G02+ B02)2
(16)

where

‘=gO{P’a+ukO-%312

+[ga+’+3EG2}‘1’)
(G02 + B02)2

N = (18)
g.glz [(Go – gz)’ + (Bo – r-0c2)2]

26M. C. waltz, A. E. Bakanowski, and A, Uhlir, ‘Second Interim
Technical Report on Crystal Rectifiers, ” Bell Telephone Labs., Task
8, Signal Corps Contract DA 36-039 SC-5589; January 15, 1955.

56Torrey and Whitmer, op. cit., p. 409. See (15).
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and G is defined in Torrey and Whitmer.27 Thus, the

condition in question gives an infinite g~ but a conver-

sion loss of zero. One can now make the statement that

for the broad-band case, negative gfl regions are always

associated with arbitrarily high gain, regardless of

whether gfi goes to infinity or to zero at the boundary of

the negative gd region. Note the use of the term “arbi-

trarily small. ” The mere fact of conversion gain, i.e.,

L <1, is not particularly significant since mixers are not

connected in tandem to obtain a large over-all gain. The

quantity of interest is the over-all receiver noise figure

which is given by F,= L(t + F, —1), where F, is the over-

all receiver noise figure, t is the noise temperature ratio

of the mixer, and F, is the noise figure of the IF ampli-

fier. It is clear that a mixer with L = 1.05 is very little

worse than one with L = 0.95 in spite of the fact that the

latter rnixer shows conversion gain. A mixer which can

have an arbitrarily small L is quite a different matter

however. The important question is then what happens

to t when L is small. At present this question cannot be

answered without resorting to experiment.

Case 2

Assume that r is finite, but that the image can be

shorted at the barrier. This is impossible in principle if

Y is frequency independent, since I/r would be the

largest admittance which could be connected to the

image terminals. The requirements for approximating

the above are given by (92)–(95) in Torrey and Whit-

mer, %gand it can be shown that these requirements are

reasonable if l/r>>uCo. Obviously at sufficiently high

frequencies this condition will not be met. Assume that

the frequency is such that gi<<u Ci. The above two as-

sumptions are not mutually exclusive. Assume the maxi-

mum nonlinearity, gl = go = g, Cl = Co= C. Finally, as-

sume that gr<<l. The last condition is almost always

met. ThenZg@

‘= [;: ;:l= r ‘;1 ’20’

[

1 + jwc?’ j&Y
B=

?’g I1“ (21)

‘~ Ibid., p. 409.
‘%Ibid., p. 136.
29Ibid., (92)–(95); and also, P. 408 (11).
so Ibid., ~. 409. Note that in the narrow-band high-frequency case

presented above, the region. of negative gp is adjacent only to a region
of small gs and not to a region of large g~. Note also that W possesses
no nontrivial singularities.

Y’ = (l/b)’.

L = g@W

where

1 \ bya+jcdclz
w=-

ga g2

gaz[l + (OJCY)2] + b.2[1 + (C0)2]

w=~
– g.(2u2C2r) + bO(2cuC)+

g. g’

Y.B = ~ _ 4~Cg/b2
joc

ya+~

( jwcgYfl=+–g– )bya + juC -

For zero spreading resistance

~ [/7.2+(~a +
~J70= i

( ‘jWc
ygo=g l––

)y. + jw”C

(23)

(24)

(25)

(26)

[WC) 2
— . (27)

(28)

(29)

(30)

(31)

1

[

(wC)’ + ~Cba
gp” = Re (yda) = g 1 –

J
— (32)

g.2 + b.2 + 2b.r.oC+ (wC) ‘ “

If we are interested in small values of L, we can focus

our attention on gp since W cannot approach zero or in-

finity for any nontrivial case. Consider the condition for

g~=o:

g.2 + (b. – 0.5tiC)2 = 0.25(wC)2. (33)

On the ya plane, this is the equation of a circle with

center at O, —0.5 UC and radius 0.5 uC. If W does not

approach zero, and it does not, then points outside the

circle and arbitrarily close to the circle will give arbi-

trarily small conversion loss. Points inside the circle

yield negative IF conductance which presumably is to

be associated with IF oscillations, and the equation for

L does not apply. The situation is quite similar to the

broad-band case.30 It is presented here because to the

author’s knowledge it has not appeared in the literature

and yet the equations are shorter and it is a simpler case

to understand than the broad-band one. A consideration

of L as a function of frequency will yield some interest-

ing results. Suppose that one considers C and g to be

fixed and u and Y. to be such that the point :y~ is a con-

siderable distance away from the circle. Then L wil I be

given by Wgfl and will be large if ya is far enough away

from the circle. However, as the frequency is increased

while y. is held constant, the conversion loss will de-
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crease, approaching zero as the circle approaches y..

Thus, we have a conversion loss that decreases as the

frequency increases. It is quite clear that one pays for

small L in terms of bandwidth. For ya must be reason-

ably close to the circle for small L, but a change in fre-

quency will in general move ya with respect to the circle,

not only because the circle moves but also because in

general y. is also a function of frequency. These two

effects could conceivably cancel over a small-frequency

band. If ya moves inside

condition holds and if y.

circle, L increases.

Returning to the case

define a function

the circle then the oscillatory

moves too far away from the

Y#O, let us set yat =yab and

-f(Y) = g – ~“: .
y + WC

(34)

Then from (31),

Y8°(Y6) = f(Ya)7 y=() (35)

while from (29),

y~ = ~ f(Y.’), ?’ #o. (36)

Note that ydo is considered a function, while yP is not.

Then

1 + j-o’

[

jwc
—g l–

‘o = T+?ucr) 2 1
(37)

g.’ + j(b.’ + OJC) “

Of course, y. is arbitrary; i.e., we assume y. is under the

control of the circuit engineer and can be made to as-

sume any value. The question arises as to whether or

not y.’ is also arbitrary, for if it is, the effect of the

spreading resistance on yd is simply multiplication by

the factor l/b. Now

Y.’ = ga’ + jba’ = (1 – jowC) (ga + jb.) ;
!_

ga cuCrb~’

‘a = 1 + (@c7)2 ;
(38)

(39)

From (38), some values of b~’ will require a negative

g. for solution. This is not physically acceptable; how-

ever, if b.’ is limited to negative values, a positive g~

will always satisfy (38). Assuming that b.’ is limited to

negative values, (29) gives

1
(1 + joJCr) [gpo(gu’, ha’)

‘d = i + (OC?’)2

+ jbe”(ga’, b.’) ] (40)

and

1
[g~”(g.’, bz’) – ~C~b~O(ga’, ha’) 1 (41)

‘8 = 1 + (tic?’)’

where

Y.BO(Ya’) = gd”(ga’$ ha’) + jb~”(ga’, ~a’) = f(Y.’). (43

The factor 1/ [1 + (aCr)2] affects the magnitude of ge but

is not a factor in determining whether or not gd becomes

negative. From (31)

(Ldc)‘gga’r
gp= 1

1 + (fro’) 2 [
o“(ga’, b.’) +

1
(43)

ga” + (bar + COC)2“

This equation shows, and it is quite clear intuitively,

that the presence of finite spreading resistance always

decreases the possibility of obtaining negative g~, and

shows precisely the condition for negative g~ with finite

spreading resistance in terms of the value of gd without

spreading resistance. Of course, gp is given by (32). Eqs.

(8), (27), and (43) can be used to calculate L when gP is

posit ive.

Case 3

Suppose r = O and the image is shorted. Then31

I“= Y’=‘[ go + .w’o gl + jmcl

1
(44)

gl go

and, from (7)

g~ = ~ _ (gI’/go) (go+ g.) + (~cdgo) (LOCO+ b.) . (45)

go (go + d’+ (@co+ b.)’

To investigate the conditions for gd = O, the numerator

and denominator of the fraction are set equal, and with

a little manipulation the following equation is obtained:

[go+(g+)l+[ba+(”co--%w
– < (/?12+ ~2c12).—

4g02
(46)

This is the equation of a circle in the ya plane with

center at

and radius squared of

:, (g,z + @’cl’).

Note that both coordinates of the center of the circle are

always negative. The general condition for g~ to be

negative with a physically realizable ya is that the radius

be greater in magnitude than the x coordinate of the

center of the circle. Thus a low-frequency cutoff for

negative gd can be calculated by setting the radius of the

circle equal to the x coordinate of the center of the circle.

Some special cases are of interest. For the case of a linear

capacitor, Cl= O, the center of the circle is at

(g,2/2go) –go; —wC” and the radius squared is

81Ibid., p. 408.
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g14—.
4gr?

Since gls gO, all points inside the circle can be shown to

correspond to negative ga, and this is physically unac-

ceptable. Just as in the broad-band case, then32 negative

IF conductance is not obtained with a linear capacitor.

~Tote, holvever, that one of the ~onditiolls, which is Cer.

tainly not met in practice, is that the LO voltage wave-

form be symmetrical. To the author’s knowledge, the

more general case has not been investigated, although

there is experimental evidence33 that relaxation of this

restriction will not change the picture.

w Ibid

‘{3H. Q. North, et al., “IVelcled Germanium Crystals, ” GE Rep.,
Contract OEMsr-262, Order No. DIC 178554; September 20, 1945.

If one sets go= gl =g and CO= Cl = C, i.e., maximum

nonlinearity for both the barrier capacitance and con-

ductance, the center of the circle is at –0,5 g, –0.5 aC

and the radius is 0.5~gz+&Cz. Thus, in this special

case there is no low-frequency cutoff for negative IF

conductance.

When g6 is not negative, W is of interest and is given

by

TV = (go + g.)’ + (b. + @co)”
. . (47)

gag12
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Resonance Properties of Ring Circuits*

FRIEDRICH

Summarg-The ring guide or ring circuit, a microwave device

consisting of a waveguide having the ends connected to form an

annular ring, has properties similar to those of ordinary resonant

cavities. Wave propagation within the ring guide, its interaction with

a waveguide to which it is coupled, and its resonant circuit properties

are investigated in this report. The properties of a prototype circuit

consisting of a ring guide of rectangular cross section were found to

agree with theory.

INTRODUCTION

cAWTI ES with conducting walls have, at wave-

lengths of the order of their geometrical sizes, the

same electromagnetic properties as resonant cir-

cuits consisting of capacitances and inductances at lower

frequencies. Therefore, cavities are useful as resonant

circuits and filter elements at microwave frequencies.

They can also be considered as waveguide sections short

circuited at each end. The electromagnetic energy oscil-

lates between the electric and magnetic states. Standing

waves and an imaginary Poynting vector are of signifi-

cance at any point in the cavity.

.4 new type of microwave circuitl consists of a wave-

guide having the ends connected to form a ring in which

waves progressing in one direction onlv are excited, This

circuit is characterized by a real Poynting vector within

the ring guide cavity. Properties of the circuit, including

* Manuscript received by the PGMTT, June 14, 1956. The re-
ported work was performed under Contract Tu 1-9004.

t Dept. of Elec. En<., Ohio State Univ., Columbus, Ohio. For-
merly at Res. Labs., Redstone Arsenal, Huntsville, Ala.

1 F. J. Tischer, Swedish Patent No. 152,491; August 26, 1952.

J. TISCHER~

the form of wave propagation within the ring, interac-

tion with a waveguide to which it is coupled, and its

Q-value, are investigated. Circuit performance wlhen

excited to produce traveling waves in one direction is

compared with that obtained when excited to produce

waves in both directions.

WAVE PROPAGATION IN TIIE RING @tcul’r WHEN

COUPLED TO A WAVEGUIDE

The system under investigation consists of a wave-

guide to which a ring guide is coupled as shown sche-

matically in Fig. 1. In order to obtain waves progressing

in one direction only in the ring, directional coupling is

used. When nondirectional coupling is applied, waves

progressing in both directions are obtained. These two

types of coupling are shown in Fig. 2, i.e., directional

coupling by two holes spaced a distance of &/4 apart

and nondirectional coupling by a single hole.

In the following derivation based on the wave con-

cept, h indicates the waves progressing toward the

coupling element, while Y corresponds to waves re-

flected and traveling from the coupling element. The

symmetry plane AA.’, Fig. 2, is used as phase reference.

The ports of the main waveguide are 1 and 2, while

those of the secondary guide which will be connected to

form a ring are 3 and 4. The other parameters which

describe the wave propagation in the region of the junc-

tion are the reflection coefficients p~~ at the four ports
. .

and the transmission coefficients T~,,, between the dif-

ferent ports with reference to plane AA’.


